skip to main content


Search for: All records

Creators/Authors contains: "Mandeville, Elizabeth G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Non‐random mating among individuals can lead to spatial clustering of genetically similar individuals and population stratification. This deviation from panmixia is commonly observed in natural populations. Consequently, individuals can have parentage in single populations or involving hybridization between differentiated populations. Accounting for this mixture and structure is important when mapping the genetics of traits and learning about the formative evolutionary processes that shape genetic variation among individuals and populations. Stratified genetic relatedness among individuals is commonly quantified using estimates of ancestry that are derived from a statistical model. Development of these models for polyploid and mixed‐ploidy individuals and populations has lagged behind those for diploids. Here, we extend and test a hierarchical Bayesian model, calledentropy, which can use low‐depth sequence data to estimate genotype and ancestry parameters in autopolyploid and mixed‐ploidy individuals (including sex chromosomes and autosomes within individuals). Our analysis of simulated data illustrated the trade‐off between sequencing depth and genome coverage and found lower error associated with low‐depth sequencing across a larger fraction of the genome than with high‐depth sequencing across a smaller fraction of the genome. The model has high accuracy and sensitivity as verified with simulated data and through analysis of admixture among populations of diploid and tetraploidArabidopsis arenosa.

     
    more » « less
  2. Abstract

    Polymorphism facilitates coexistence of divergent morphs (e.g., phenotypes) of the same species by minimizing intraspecific competition, especially when resources are limiting. Arctic char (Salvelinussp.) are a Holarctic fish often forming morphologically, and sometimes genetically, divergent morphs. In this study, we assessed the morphological and genetic diversity and divergence of 263 individuals from seven populations of arctic char with varying length‐frequency distributions across two distinct groups of lakes in northern Alaska. Despite close geographic proximity, each lake group occurs on landscapes with different glacial ages and surface water connectivity, and thus was likely colonized by fishes at different times. Across lakes, a continuum of physical (e.g., lake area, maximum depth) and biological characteristics (e.g., primary productivity, fish density) exists, likely contributing to characteristics of present‐day char populations. Although some lakes exhibit bimodal size distributions, using model‐based clustering of morphometric traits corrected for allometry, we did not detect morphological differences within and across char populations. Genomic analyses using 15,934 SNPs obtained from genotyping by sequencing demonstrated differences among lake groups related to historical biogeography, but within lake groups and within individual lakes, genetic differentiation was not related to total body length. We used PERMANOVA to identify environmental and biological factors related to observed char size structure. Significant predictors included water transparency (i.e., a primary productivity proxy), char density (fish·ha‐1), and lake group. Larger char occurred in lakes with greater primary production and lower char densities, suggesting less intraspecific competition and resource limitation. Thus, char populations in more productive and connected lakes may prove more stable to environmental changes, relative to food‐limited and closed lakes, if lake productivity increases concomitantly. Our findings provide some of the first descriptions of genomic characteristics of char populations in arctic Alaska, and offer important consideration for the persistence of these populations for subsistence and conservation.

     
    more » « less
  3. Abstract

    We used historical stocking and population survey records of Yellowstone Cutthroat TroutOncorhynchus clarkii bouvieriand other salmonids in the North Fork Shoshone River drainage, Wyoming to summarize fish stocking history and population trends. Based on 98 years of historical records, we found that despite extensive stocking of Yellowstone Cutthroat Trout and minimal stocking of nonnative salmonids after about 1950, populations of wild Yellowstone Cutthroat Trout declined relative to those of nonnative salmonid species. The timing of increases in nonnative salmonids (1970s) did not coincide with their period of most intensive stocking (1935–1950). It is plausible that Yellowstone Cutthroat Trout populations persisted because of high levels of supplemental stocking from 1935 to 1965 and declined with reduced stocking efforts in the 1970s, thereby allowing the increase of introduced nonnative salmonids. The establishment of nonnative salmonids likely further reduced stocking success of Yellowstone Cutthroat Trout due to competition and hybridization. This study demonstrates that an understanding of long‐term stocking records and population survey data can be useful for developing and implementing successful management frameworks for the conservation of imperiled fish populations across the United States.

     
    more » « less
  4. Abstract

    Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.

     
    more » « less